S-matrix approach for calculations of the optical properties of metallic-dielectric photonic crystal slabs

N. I. Komarevskiy¹,², T. Weiss³, and S. G. Tikhodeev²

¹Faculty of Physics, Lomonosov Moscow State University, Russia
²A. M. Prokhorov General Physics Institute, RAS, Moscow, Russia
³LASMEA, Universite Blaise Pascal, France
Contents

1) **Introduction**
 a) Photonic crystal slabs (PCSs)
 b) Optical peculiarities of the PCSs
 c) Transfer and scattering matrices

2) **Additions to the S-matrix approach**
 a) Comparison of the S-matrix and improved S-matrix calculation schemes

3) **S-matrix calculations of the optical properties**
 a) Dispersion relation
 b) Spectra
 c) Near-field distribution
Photonic crystal slabs (PCS)

Layers may be composed of dielectrics, metals, semiconductors

Peculiarities in optical spectra

- Diffractive
 - (opening of diffractive channels as λ decreases)

- Waveguide

- Plasmonic Resonances
 - (localized and delocalized)
Transfer-matrix method

Transfer matrix combines the amplitudes at different planes a and b

\[
\begin{pmatrix}
\vec{A}_a^+ \\
\vec{A}_b^-
\end{pmatrix}
\begin{pmatrix}
\vec{A}_b^+ \\
\vec{A}_a^-
\end{pmatrix}
= T_{a,b}
\begin{pmatrix}
\vec{A}_a^+ \\
\vec{A}_b^-
\end{pmatrix}
\]

Scheme of calculations

1) Splitting of the structure into layers along Oz
2) Floquet-Fourier expansion of the Maxwell's equations in each layer
3) Calculation of transfer, interface and total transfer matrices through the structure
4) Calculation of transmission, reflection, absorption

T-matrix is numerically instable for PCSs (mixing of exponentially increasing and decreasing modes)
Scattering-matrix method

S-matrix combines the input amplitudes with the output ones

\[
\begin{pmatrix}
A_+^a \\
A_-^a \\
A_+^b \\
A_-^b
\end{pmatrix}
= \mathbf{S}_{a,b}
\begin{pmatrix}
A_+^a \\
A_-^a \\
A_+^b \\
A_-^b
\end{pmatrix}
\]

Scheme of calculations

1) Splitting of the structure into layers along Oz
2) Floquet-Fourier expansion of the Maxwell's equations in each layer
3) Calculation of the transfer matrix for field amplitudes
4) Iterative calculation of the scattering matrix, Ko&Inkson (1988)
5) Calculation of transmission, reflection, absorption and diffraction

—Whittaker&Culshaw, PRB 60, 2610 (1999)
Scattering matrix approach

Advantages of the method:
1) No additional fitting parameters, only structure's geometry and epsilon data
2) Calculation of the near-field distribution
3) All calculation can be performed on PC

Limitations of the method:
1) Slow convergence for metallic-dielectric layers
2) Time of calculations $\sim N_g^3$, N_g - number of used harmonics

Additions to the method1: adaptive spatial resolution2

Improved convergence1!!!

Accuracy of the solution (eigenvalues)2???

Accuracy of the eigenvalue calculations

Compare two calculation schemes

- **S-matrix** (factorization rules)
- **S-matrix improved** (with adaptive spatial resolution and factorization rules)

Eigenvalues in the periodic layer \(K(n) = K(n)(k_{x_0}, \omega) \)

\(n=1, \ldots, 2N_g, N_g \) - number of used harmonics

It is not possible to check the accuracy of \(K \) directly!

Using T-matrix over the period and some math...

\[
T_d = T_{d_2} T_{2 \rightarrow 1} T_{d_1} T_{1 \rightarrow 2} \Rightarrow k_x^{(n)} = k_x^{(n)}(K(n), \omega)
\]

\[
k_{x_0} = \frac{\omega}{c} \cos \theta
\]

- compare two values

Gold nanowires on top of quartz substrate
Accuracy of the eigenvalue calculation

\[k_x^{(n)} = k_x^{(n)}(K^{(n)}, \omega) \]
\[k_{x0} = \frac{\omega}{c} \cos \theta \]

\[
\lim_{N_g \to \infty} \ln \left(\frac{|k_x^{(n)} - k_{x0}|}{k_{x0}} \right) = -\infty \quad \text{n=const (fixed harmonic)}
\]

TE - polarization

Energy=1200 meV, \(K_{x0} = 4.3 \, \mu m^{-1} \), \(\varepsilon_1 = -45.2 + 3.26i \), \(\varepsilon_2 = 1 \)

- improved S-matrix
- S-matrix

TM - polarization

Energy=1200 meV, \(K_{x0} = 4.3 \, \mu m^{-1} \), \(\varepsilon_1 = -45.2 + 3.26i \), \(\varepsilon_2 = 1 \)

- improved S-matrix
- S-matrix
S-matrix calculations of the optical properties

dispersion relation of the waveguide modes

\[\det(S^{-1}(\omega, k_{\parallel})) = 0 \]

Air light cone
Substrate light cone
Waveguide light cone

L_z = 300 nm; \(\varepsilon_1 = 1; \varepsilon_2 = 4; \varepsilon_3 = 2.13 \)
S-matrix calculations of the optical properties

dispersion relation of the surface plasmon polariton

\[\det(S^{-1}(\omega, k_||)) = 0 \]

\(\varepsilon_{Ag} \) – calculated using Lorentz-Drude model

\[\varepsilon_1 = 1; \ varepsilon_2 = Ag; \ varepsilon_3 = 2.13 \]

\[L_z = 50 \text{ nm} \]
\[L_z = 30 \text{ nm} \]
\[L_z = 10 \text{ nm} \]

Air light cone
Substrate light cone

\(^1\text{A. D. Rakić et al., Applied Optics, Vol. 37, No. 22 (1998)}\)
S-matrix calculations of the optical properties

1) Localized plasmon in gold nanowires (Energy~1.8 eV)

2) Delocalized plasmon in the silver film (excitation due to periodic corrugation)

3) Interaction of the resonances

Structure parameters:

\[w_{Au} = 100 \text{ nm}, \ h_{wire} = 20 \text{ nm}, \ L_z = 40 \text{ nm}, \ h_{film} = 10 \text{ nm}, \ d_x = 200-350 \text{ nm} \]
S-matrix calculations of the optical properties

Structure parameters:
\(w_{\text{Au}} = 100 \text{ nm}, h_{\text{wire}} = 20 \text{ nm}, L_{\text{z}} = 40 \text{ nm}, h_{\text{film}} = 10 \text{ nm}, d_{\text{x}} = 200-350 \text{ nm} \)

Period = 200 nm

Dispersion relation of bare plasmon modes

Calculated extinction spectrum

Normal light incidence, TM - polarization
S-matrix calculations of the optical properties

Structure parameters:
$w_{Au} = 100 \text{ nm}$, $h_{wire} = 20 \text{ nm}$, $L_z = 40 \text{ nm}$, $h_{film} = 10 \text{ nm}$, $d_x = 200-350 \text{ nm}$

Period = 350 nm

Dispersion relation of bare plasmon modes

Calculated extinction spectrum

Normal light incidence, TM - polarization
S-matrix calculations of the optical properties

Near-field distribution at resonances

Electric field

Magnetic field

Field Energy 1220 meV
S-matrix calculations of the optical properties

Near-field distribution at resonances

Electric field

Magnetic field
Conclusions

1) Scattering matrix approach is a powerful tool for calculations of the PCS

1) Accuracy of the two calculation schemes were compared. Improved scheme shows better results for TM polarization and not large number of harmonics < 121

1) Extinction spectra and near-field distribution of the specific structure have been modeled theoretically
Acknowledgements

Georgy Kichin 1, Anton Akimov1, and Nikolay Gippius1,2

1A. M. Prokhorov General Physics Institute, RAS, Moscow, Russia
2LASMEA, Universite Blaise Pascal, France
Thank you for your attention!