A fast solver for the periodic Lippmann-Schwinger equation

Kai Sandfort

6th Workshop on Numerical Methods for Optical Nano Structures, ETH Zürich
2010, 6th July

associate member of the Workgroup of Inverse Problems, Department of Mathematics
leader of the Feasibility Study “Schnelle alternative Lösung von Streuproblemen mit unstetigen Materialparametern”
Outline

1 Introduction
 Scattering from a periodic inhomogeneity

2 Vainikko’s method
 Periodization of the problem
 Trigonometric collocation
 Modification for discontinuous contrasts

3 Numerical results

4 Outlook
Motivation: Scattering from a periodic inhomogeneity

Here: time-harmonic fields, TM mode, 2D projection

\[R^2 \setminus \tilde{\Omega}, \ q = 0 \]
\[R_+ \]
\[\tilde{\Omega}, \ q \neq 0 \]
\[-\pi \]
\[+\pi \]
\[R_- \]
\[\partial \tilde{\Omega} \]

‘periodic’ \(\equiv \) ‘2\pi’-periodic in \(x_1 \)

\[\tilde{\Omega} \]
periodic medium (Lipschitz)

\[\Pi \]
unit cell

\[R_{\pm} \]
semi-infinite rectangles in \(\Pi \)
above / below \(\tilde{\Omega} \)

\[q \]
periodic contrast with
\[q(x)\big|_{x_1=-\pi} = q(x)\big|_{x_1=+\pi} \]
\((q \text{ sufficiently regular}) \)
Motivation: Scattering from a periodic inhomogeneity

\[R^2 \setminus \Omega, \ q = 0 \]

\[\partial \Omega, \ q \neq 0 \ -\pi \]

\[\Omega, \ q \neq 0 \ +\pi \]

\[R_+ \]

\[R_- \]

Scattering problem: Find a periodic \(u_{\text{per}} : \Pi \to \mathbb{C} \) such that

\[\Delta u_{\text{per}} + \kappa_0^2 (1 + q) u_{\text{per}} = 0, \quad u_{\text{per}} = u_{\text{per}}^i + u_{\text{per}}^s \quad \text{in} \ \Pi, \quad u_{\text{per}} \approx E_3 \]

\[u_{\text{per}}^s(x) = \sum_{z \in \mathbb{Z}} u_{z}^{\pm} e^{i(z x_1 \pm \beta z x_2)} \quad \text{in} \ R_{\pm}, \quad \beta_z = \sqrt{\kappa_0^2 - |z|^2} \neq 0 \ \forall z \in \mathbb{Z}. \]
Motivation: Scattering from a periodic inhomogeneity

\[\begin{array}{c}
\mathbb{R}^2 \setminus \tilde{\Omega}, \quad q = 0 \\
R^2 \setminus \tilde{\Omega}, \quad q \neq 0
\end{array} \]

\[R_+, \quad R_- \]

\[\tilde{\Omega}, \quad q \neq 0 \]

\[-\pi \quad +\pi \]

\[\partial \tilde{\Omega} \]

\[\Pi \]

\[\therefore \quad \text{equivalent to the periodic Lippmann-Schwinger equation} \]

\[u_{\text{per}}(x) = u_{\text{per}}^i(x) + \kappa_0^2 \int_{\Omega} G_{\text{per}}(x - y) q(y) u_{\text{per}}(y) \, dy, \quad x \in \Omega. \]

\[\Omega = \tilde{\Omega} \cap \Pi, \quad G_{\text{per}}: \text{periodic Green's function for } \Delta + \kappa_0^2 \text{id} \]
The periodic Lippmann-Schwinger equation

\[u_{\text{per}}(x) = u_{\text{per}}^i(x) + \kappa_0^2 \int_{\Omega} G_{\text{per}}(x - y) q(y) u_{\text{per}}(y) \, dy, \quad x \in \Omega. \]

- \(1 + q \in L^{\infty}(\Omega)\) is the refraction index of the medium
- \(\text{pLS}\) is uniquely solvable in \(C_{\text{per}}(\Omega) \iff \text{pLS}\) with \(u_{\text{per}}^i \equiv 0\) has only trivial solution (Fredholm alternative)
- unique extension to \(\Pi \setminus \Omega\) by RHS of \(\text{pLS}\) yields \(u_{\text{per}}\) in \(\Pi\) (and in \(\mathbb{R}^2\))
- in \(\Pi \setminus \overline{\Omega}\), \(u_{\text{per}}\) is smooth (strict ellipticity), even analytic (analyticity inherited from \(G_{\text{per}}\))
The periodic Lippmann-Schwinger equation

\[u_{\text{per}}(x) = u_{\text{per}}^i(x) + \kappa_0^2 \int_{\Omega} G_{\text{per}}(x - y) q(y) u_{\text{per}}(y) \, dy, \quad x \in \Omega. \]

- \(1 + q \in L^\infty(\Omega)\) is the refraction index of the medium

- **pLS** is uniquely solvable in \(C_{\text{per}}(\Omega)\) \(\iff\) **pLS** with \(u_{\text{per}}^i \equiv 0\) has only trivial solution (Fredholm alternative)

- unique extension to \(\Pi \setminus \Omega\) by RHS of **pLS** yields \(u_{\text{per}}\) in \(\Pi\) (and in \(\mathbb{R}^2\))

- in \(\Pi \setminus \overline{\Omega}\), \(u_{\text{per}}\) is smooth (strict ellipticity), even analytic (analyticity inherited from \(G_{\text{per}}\))
The periodic Lippmann-Schwinger equation

\[u_{\text{per}}(x) = u_{\text{per}}^i(x) + \kappa_0^2 \int_{\Omega} G_{\text{per}}(x - y) q(y) u_{\text{per}}(y) \, dy, \quad x \in \Omega. \]

- \(1 + q \in L^\infty(\Omega) \) is the refraction index of the medium
- \(\text{pLS} \) is uniquely solvable in \(C_{\text{per}}(\Omega) \) if \(\text{pLS} \) with \(u_{\text{per}}^i \equiv 0 \) has only trivial solution (Fredholm alternative)
- unique extension to \(\Pi \setminus \Omega \) by RHS of \(\text{pLS} \) yields \(u_{\text{per}} \) in \(\Pi \) (and in \(\mathbb{R}^2 \))
- in \(\Pi \setminus \overline{\Omega} \), \(u_{\text{per}} \) is smooth (strict ellipticity), even analytic (analyticity inherited from \(G_{\text{per}} \))
The periodic Lippmann-Schwinger equation

\[u_{\text{per}}(x) = u_{\text{per}}^i(x) + \kappa_0^2 \int_{\Omega} G_{\text{per}}(x - y) q(y) u_{\text{per}}(y) \, dy, \quad x \in \Omega. \]

- \(1 + q \in L^\infty(\Omega)\) is the refraction index of the medium
- \(\text{pLS}\) is uniquely solvable in \(C_{\text{per}}(\Omega) \iff \text{pLS}\) with \(u_{\text{per}}^i \equiv 0\) has only trivial solution (Fredholm alternative)
- unique extension to \(\Pi \setminus \Omega\) by RHS of \(\text{pLS}\) yields \(u_{\text{per}}\) in \(\Pi\) (and in \(\mathbb{R}^2\))
- in \(\Pi \setminus \overline{\Omega}\), \(u_{\text{per}}\) is smooth (strict ellipticity), even analytic (analyticity inherited from \(G_{\text{per}}\))
My talk in a nutshell

object of interest: periodic Lippmann-Schwinger equation \(pLS \)

aim: its efficient numerical treatment

tools: method by Prof. em. Gennadi Vainikko and my enhancement
Choose $r > 0$ so that $\overline{\Omega} \subset C_r = \{ x \in \Pi : |x_2| < r \}$. Consider restrictions of $G_{\text{per}}, u_{\text{per}}^i$, and q to $\overline{C_{2r}}$. Extend to \mathbb{R}^2 as $(2\pi, 4r)$-biperiodic functions. Denote extensions by $K_{\text{ext}}, u_{\text{ext}}^i$, and q_{ext}, respectively.
For $v_{\text{ext}} = q_{\text{ext}} u_{\text{ext}}$ and $x \in C_{2r}$, we get the $(2\pi, 4r)$-biperiodic L.-S. eqn.

$$v_{\text{ext}}(x) = (q_{\text{ext}} u_{\text{ext}}^i)(x) + \kappa_0^2 q_{\text{ext}}(x) \int_{C_{2r}} K_{\text{ext}}(x - y) v_{\text{ext}}(y) \, dy.$$
• **Fourier expansion** of K_{ext} w.r.t. trigonometric basis $\{\varphi_j\}_{j \in \mathbb{Z}^2}$ of $L^2(C_{2r})$

• It holds $(\Delta + \kappa_0^2) \varphi_j = \lambda_j \varphi_j$. Assume $\lambda_j \neq 0$ for all $j \in \mathbb{Z}^2$.

• By Green’s representation theorem, we obtain

$$\hat{K}_{\text{ext}}(j) = -\frac{\tilde{c}}{\lambda_j} \left(1 - (-1)^j e^{i \beta h^{2r}}\right) \quad \Rightarrow \quad \hat{K}_{\text{ext}}(j) = \mathcal{O}(|j|^{-2}),$$

\tilde{c}: normalization constant.

exploited: problem-specific periodicity in x_1!
- Fourier expansion of K_{ext} w.r.t. trigonometric basis $\{\varphi_j\}_{j \in \mathbb{Z}^2}$ of $L^2(C_{2r})$

- It holds $(\Delta + \kappa_0^2) \varphi_j = \lambda_j \varphi_j$. Assume $\lambda_j \neq 0$ for all $j \in \mathbb{Z}^2$.

- By Green's representation theorem, we obtain

$$\hat{K}_{\text{ext}}(j) = -\frac{\tilde{c}}{\lambda_j} \left(1 - (-1)^j e^{i\beta_1 2r} \right) \Rightarrow \hat{K}_{\text{ext}}(j) = O(|j|^{-2}),$$

\tilde{c}: normalization constant.

exploited: problem-specific periodicity in x_1!
• Fourier expansion of K_{ext} w.r.t. trigonometric basis $\{\varphi_j\}_{j \in \mathbb{Z}^2}$ of $L^2(C_{2r})$

• It holds $(\Delta + \kappa_0^2) \varphi_j = \lambda_j \varphi_j$. Assume $\lambda_j \neq 0$ for all $j \in \mathbb{Z}^2$.

• By Green’s representation theorem, we obtain

$$\hat{K}_{\text{ext}}(j) = -\frac{\tilde{c}}{\lambda_j} \left(1 - (-1)^j e^{i \beta_i 2r} \right) \Rightarrow \hat{K}_{\text{ext}}(j) = O(|j|^{-2}),$$

\tilde{c}: normalization constant.

exploited: problem-specific periodicity in x_1!
Trigonometric collocation for smooth contrast

Define

$$\mathbb{Z}_N^2 = \left\{ j \in \mathbb{Z}^2 : -\frac{N}{2} < j_k \leq \frac{N}{2}, \ k = 1, 2 \right\},$$

$$\mathcal{T}_N = \text{span} \left\{ \varphi_j, \ j \in \mathbb{Z}_N^2 \right\}.$$

Define interpolation projection $Q_N : C_{\text{per}}(C_{2r}) \to \mathcal{T}_N$ by

$$(Q_N v_{\text{per}})(j \odot h_N) = v_{\text{per}}(j \odot h_N), \quad j \in \mathbb{Z}_N^2,$$

where $h_N = (2\pi, 4r)/N$ and \odot denotes componentwise multiplication.
Trigonometric collocation for smooth contrast

For \(q \in H^2_{\text{per}}(C_{2r}) \), solve \(\text{bpLS} \) by collocation

\[
\nu_N = Q_N(q_{\text{ext}} u_{\text{ext}}^i) + \kappa_0^2 Q_N(q_{\text{ext}} \mathcal{K} \nu_N), \tag{bpLS-C}
\]

where \(\mathcal{K} : L^2(C_{2r}) \rightarrow H^2_{\text{per}}(C_{2r}) \) is given by

\[
(\mathcal{K} \nu_{\text{per}})(x) = \int_{C_{2r}} K_{\text{ext}}(x - y) \nu_{\text{per}}(y) \, dy.
\]

Note: \((\mathcal{K} \varphi_j)(x) = \widetilde{c}^{-1} \widetilde{K}_{\text{ext}}(j) \varphi_j(x), \ j \in \mathbb{Z}^2, \) by convolution theorem

\(\widehat{\nu}_N(j), \ j \in \mathbb{Z}^2_N, \) are computed by fast Fourier transform (FFT)
Trigonometric collocation for smooth contrast

For \(q \in H^2_{\text{per}}(C_2r) \), solve \(\text{bpLS} \) by collocation

\[
\nu_N = Q_N(q_{\text{ext}} u^i_{\text{ext}}) + \kappa_0^2 Q_N(q_{\text{ext}} K \nu_N), \tag{bpLS-C}
\]

where \(K : L^2(C_2r) \rightarrow H^2_{\text{per}}(C_2r) \) is given by

\[
(K \nu_{\text{per}})(x) = \int_{C_2r} K_{\text{ext}}(x - y) \nu_{\text{per}}(y) \, dy.
\]

Hence, we can

avoid numerical integration for \(\text{bpLS-C} \) and use cheap expressions!
Theorem 1: Assume \(q \in H^2_{\text{per}}(C_{2r}) \) and \(u^i_{\text{per}} \in H^2_{\text{per}}(C_{2r}) \). Let \(p_{\text{LS}} \) with \(u^i_{\text{per}} \equiv 0 \) be only trivially solvable.

Then, \(b_{\text{LS}} \) has a unique sol.n \(v_{\text{ext}} \in H^2_{\text{per}}(C_{2r}) \), and the collocation eqn. \(b_{\text{LS}} - C \) has a unique sol.n \(v_N \in \mathcal{I}_N \) for \(N \geq N_0 \), and

\[
\| v_N - v_{\text{ext}} \|_\lambda \leq c' N^{\lambda - 2} \| v_{\text{ext}} \|_2, \quad 0 \leq \lambda \leq 2.
\]

Here, \(\| \cdot \|_\mu \) denotes the norm of \(H^\mu_{\text{per}}(C_{2r}) \).
Modification for discontinuous contrasts

Assume \(q \in L^2(C_{2r}) \). Instead of

\[
v_{\text{ext}}(x) = (q_{\text{ext}} u_{\text{ext}}^i)(x) + \kappa_0^2 q_{\text{ext}}(x) \int_{C_{2r}} K_{\text{ext}}(x - y) v_{\text{ext}}(y) \, dy
\]

for \(v_{\text{ext}} = q_{\text{ext}} u_{\text{ext}} \) in \(C_{2r} \), consider

\[
u_{\text{per}}(x) = u_{\text{per}}^i(x) + \kappa_0^2 \int_{\Omega} G_{\text{per}}(x - y) q(y) u_{\text{per}}(y) \, dy
\]

for \(u_{\text{per}} \) in \(\Omega \) (total field).
Modification for discontinuous contrasts

Assume $q \in L^2(C_{2r})$. Instead of

$$v_{\text{ext}}(x) = (q_{\text{ext}} u_{\text{ext}}^i)(x) + \kappa_0^2 q_{\text{ext}}(x) \int_{C_{2r}} K_{\text{ext}}(x - y) v_{\text{ext}}(y) \, dy$$

for $v_{\text{ext}} = q_{\text{ext}} u_{\text{ext}}$ in C_{2r}, consider

$$u_{\text{per}}(x) = u_{\text{per}}^i(x) + \kappa_0^2 \int_{\Omega} G_{\text{per}}(x - y) q(y) u_{\text{per}}(y) \, dy$$

for u_{per} in Ω (total field).

Recall $K_{\text{ext}} = G_{\text{per}}$ on $\overline{C_{2r}} \subset (2 \cdot \Omega) \cap \Pi$.
Modification for discontinuous contrasts

\[
\begin{align*}
&u_{\text{per}}(x) = u'^{\text{per}}_{\text{per}}(x) + \kappa_0^2 \int_{\Omega} K_{\text{ext}}(x-y) q(y) u_{\text{per}}(y) \, dy, \quad x \in \Omega \\
&\text{ Define } \mathcal{P} u = \begin{cases}
 u & \text{in } \Omega \\
 0 & \text{in } C_{2r} \setminus \Omega
\end{cases} \text{ and } \mathcal{R} u = u|_{\Omega}, \text{ then new integral operator } \tilde{\mathcal{K}} : L^2(\Omega) \to H^2_{\text{per}}(\Omega) \text{ by } \\
&\tilde{\mathcal{K}} = \mathcal{R} \circ \mathcal{K} \circ \mathcal{P}.
\end{align*}
\]

- Use extension operator \(E_{\text{per}} : H^2_{\text{per}}(\Omega) \to H^2_{\text{per}}(C_{2r}) \) to setup collocation

\[
\begin{align*}
u_N &= Q_N E_{\text{per}}(u'^{\text{per}}_{\text{per}}) + \kappa_0^2 Q_N E_{\text{per}} \tilde{\mathcal{K}}(q \mathcal{R} u_N).
\end{align*}
\]

Purpose: Good approx. by \(Q_N \) as restriction to \(\Omega \) of a function in \(T_N \)!
Modification for discontinuous contrasts

\[u_{\text{per}}(x) = u_{i\text{per}}(x) + \kappa_0^2 \int_{\Omega} K_{\text{ext}}(x - y) q(y) u_{\text{per}}(y) \, dy, \quad x \in \Omega \]

- Define \(\mathcal{P} u = \begin{cases} u & \text{in } \Omega \\ 0 & \text{in } C_{2r} \setminus \Omega \end{cases} \) and \(\mathcal{R} u = u|_{\Omega} \), then new integral operator \(\mathcal{\tilde{K}} : L^2(\Omega) \to H^2_{\text{per}}(\Omega) \) by \(\mathcal{\tilde{K}} = \mathcal{R} \circ \mathcal{K} \circ \mathcal{P} \).

- Use extension operator \(\mathbb{E}_{\text{per}} : H^2_{\text{per}}(\Omega) \to H^2_{\text{per}}(C_{2r}) \) to setup collocation

\[u_N = Q_N \mathbb{E}_{\text{per}} (u_{i\text{per}}) + \kappa_0^2 Q_N \mathbb{E}_{\text{per}} \mathcal{\tilde{K}}(q \mathcal{R} u_N). \]

Purpose: Good approx. by \(Q_N \) as restriction to \(\Omega \) of a function in \(T_N \)!
Illustration of the extension by $E_{\text{per}} : H^2_{\text{per}}(\Omega) \rightarrow H^2_{\text{per}}(C_{2r})$

(left) data points in Ω, (right) extension to C_{2r} with data and guiding points
Theorem 2: Assume \(q \in L^2(C_{2r}) \) and \(u^i_{per} \in H^2_{per}(C_{2r}) \). Let \(\text{pLS} \) with \(u^i_{per} \equiv 0 \) be only trivially solvable. Then, \(\text{pLS} \) has a unique sol.n \(u_{per} \in H^2_{per}(\Omega) \), and the collocation eqn. \(E-\text{pLS}-C \) has a unique sol.n \(u_N \in \mathcal{T}_N \) for \(N \geq N_0 \), and

\[
\|u_N - E_{per}u_{per}\|_\lambda \leq c'' N^{\lambda-2} \|E_{per}u_{per}\|_2, \quad 0 \leq \lambda \leq 2.
\]

Cost: extremely efficient eval. of \(\mathcal{K} \) applied to \(\varphi_j \in \mathcal{T}_N \) not applicable!
For piecewise constant \(q = \sum_{i=1}^{L} q_i \text{id}_{C_i} \):

For some \(N_0 \geq N \), precompute "generalized Fourier coefficients"

\[
\hat{K}_{\text{ext}}^{(i)}(x, j) = \int_{\tilde{C}_i} G_{\text{per}}(x - y) \varphi_j(y) \, dy, \quad j \in \mathbb{Z}_{N_0}^2,
\]

on grid \(\mathbb{Z}_{N_0}^2 \odot h_{N_0} \ni x \). Use again Green's representation theorem.

Assume that any valid \(C_i \) meets \(C_i = \bigcup_{k \in \mathcal{I}_i} \tilde{C}_k \).
Projection errors for piecewise constant q

(left) piecewise constant q, (right) error in the orthogonal (P_N) and in the interpolation (Q_N) projection of q
Projection errors for smooth q

(left) smooth q, (right) error in the orthogonal and in the interpolation projection of q
Error in the solution v_N to the collocation bpLS-C

$\log_2(\text{rel. error of } v_N)$

$\log_2(\text{rel. error of } u_N)$

error in v_N w.r.t. v_{128} *(Theorem 1 applies!)*
Projection errors for smoothly extended q

left smoothly extended q, *right* error in the orthogonal and in the interpolation projection of the extension
Error in the solution u_N to the collocation E-pLS-C

error in u_N w.r.t. u_{64} (Theorem 2 applies!)
Evolution of v_N (for exemplary u_{per}^i)

V_{16}

V_{32}

V_{64}
Evolution of u_N cropped to Ω (for same u_{per}^i)
Outlook

- setup of a solver for full time-harmonic EM case with $\mu_r \equiv 1$, i.e. for

$$u_{\text{per}}(x) = u_{\text{per}}^i(x) + \text{curl} \int_{\Omega} G_{\text{per}}(x - y) \left(1 - \frac{1}{\varepsilon_r(y)} \right) \text{curl} u_{\text{per}}(y) \, dy$$

with $x \in \Omega$. Here: $u_{\text{per}} \equiv H$ (total magnetic field)

- error estimation for collocation sol.n to above eqn.
- error analysis for two-grid collocation solver for above eqn.
- acceleration of computation of generalized Fourier coefficients
Outlook

- setup of a solver for full time-harmonic EM case with $\mu_r \equiv 1$, i.e. for

$$u_{\text{per}}(x) = u^i_{\text{per}}(x) + \text{curl} \int_{\Omega} G_{\text{per}}(x - y) \left(1 - \frac{1}{\varepsilon_r(y)} \right) \text{curl} u_{\text{per}}(y) \, dy$$

with $x \in \Omega$. Here: $u_{\text{per}} \triangleq H$ (total magnetic field)

- error estimation for collocation sol.n to above eqn.
- error analysis for two-grid collocation solver for above eqn.
- acceleration of computation of generalized Fourier coefficients
Outlook

- setup of a solver for full time-harmonic EM case with $\mu_r \equiv 1$, i.e. for

$$u_{\text{per}}(x) = u^i_{\text{per}}(x) + \text{curl} \int_{\Omega} G_{\text{per}}(x - y) \left(1 - \frac{1}{\varepsilon_r(y)}\right) \text{curl} u_{\text{per}}(y) \, dy$$

with $x \in \Omega$. Here: $u_{\text{per}} \equiv H$ (total magnetic field)

- error estimation for collocation sol.n to above eqn.
- error analysis for two-grid collocation solver for above eqn.
- acceleration of computation of generalized Fourier coefficients
Outlook

- setup of a solver for full time-harmonic EM case with $\mu_r \equiv 1$, i.e. for

$$u_{\text{per}}(x) = u_{\text{per}}^i(x) + \text{curl} \int_{\Omega} G_{\text{per}}(x - y) \left(1 - \frac{1}{\varepsilon_r(y)}\right) \text{curl} u_{\text{per}}(y) \, dy$$

with $x \in \Omega$. Here: $u_{\text{per}} \triangleq H$ (total magnetic field)
- error estimation for collocation solution to above eqn.
- error analysis for two-grid collocation solver for above eqn.
- acceleration of computation of generalized Fourier coefficients
Thank you!

Reference: